Semiparametric Efficient Estimation of Partially Linear Quantile Regression Models
نویسندگان
چکیده
Lee (2003) develops a √ n-consistent estimator of the parametric component of a partially linear quantile regression model, which is used to obtain his one-step semiparametric efficient estimator. As a result, how well the efficient estimator performs depends on the quality of the initial √ n-consistent estimator. In this paper, we aim to improve the small sample performance of the one-step efficient estimator by proposing a new √ n-consistent initial estimator, which does not require any trimming procedure and is less sensitive to data outliers and the choice of bandwidth than Lee’s (2003) initial consistent estimator. Monte Carlo simulation results confirm that the proposed estimator and the one-step efficient estimator derived from it have more desirable empirical features than Lee’s estimators. c © 2005 Peking University Press
منابع مشابه
Efficient Semiparametric Estimation of a Partially Linear Quantile Regression Model
This paper is concerned with estimating a conditional quantile function that is assumed to be partially linear+ The paper develops a simple estimator of the parametric component of the conditional quantile+ The semiparametric efficiency bound for the parametric component is derived, and two types of efficient estimators are considered+ Asymptotic properties of the proposed estimators are establ...
متن کاملSemiparametric Quantile Regression Estimation in Dynamic Models with Partially Varying Coefficients∗
We study quantile regression estimation for dynamic models with partially varying coefficients so that the values of some coefficients may be functions of informative covariates. Estimation of both parametric and nonparametric functional coefficients are proposed. In particular, we propose a three stage semiparametric procedure. Both consistency and asymptotic normality of the proposed estimato...
متن کاملNew Efficient Estimation and Variable Selection Methods for Semiparametric Varying-coefficient Partially Linear Models By
The complexity of semiparametric models poses new challenges to statistical inference and model selection that frequently arise from real applications. In this work, we propose new estimation and variable selection procedures for the semiparametric varying-coefficient partially linear model. We first study quantile regression estimates for the nonparametric varyingcoefficient functions and the ...
متن کاملNew Efficient Estimation and Variable Selection Methods for Semiparametric Varying-coefficient Partially Linear Models.
The complexity of semiparametric models poses new challenges to statistical inference and model selection that frequently arise from real applications. In this work, we propose new estimation and variable selection procedures for the semiparametric varying-coefficient partially linear model. We first study quantile regression estimates for the nonparametric varying-coefficient functions and the...
متن کاملEfficient Estimation of Semiparametric Conditional Moment Models with Possibly Nonsmooth Residuals By
This paper considers semiparametric efficient estimation of conditional moment models with possibly nonsmooth residuals in unknown parametric components (θ ) and unknown functions (h) of endogenous variables. We show that: (1) the penalized sieve minimum distance (PSMD) estimator (θ̂ , ĥ) can simultaneously achieve root-n asymptotic normality of θ̂ and nonparametric optimal convergence rate of ĥ,...
متن کامل